Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Principal Component Analysis and Study of Port-Induced Swirl Structures in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-1696
In this work computational and experimental approaches are combined to characterize in-cylinder flow structures and local flow field properties during operation of the Sandia 1.9L light-duty optical Diesel engine. A full computational model of the single-cylinder research engine was used that considers the complete intake and exhaust runners and plenums, as well as the adjustable throttling devices used in the experiments to obtain different swirl ratios. The in-cylinder flow predictions were validated against an extensive set of planar PIV measurements at different vertical locations in the combustion chamber for different swirl ratio configurations. Principal Component Analysis was used to characterize precession, tilting and eccentricity, and regional averages of the in-cylinder turbulence properties in the squish region and the piston bowl.
Technical Paper

Highway Fuel Economy Testing of an RCCI Series Hybrid Vehicle

2015-04-14
2015-01-0837
In the current work, a series-hybrid vehicle has been constructed that utilizes a dual-fuel, Reactivity Controlled Compression Ignition (RCCI) engine. The vehicle is a 2009 Saturn Vue chassis and a 1.9L turbo-diesel engine converted to operate with low temperature RCCI combustion. The engine is coupled to a 90 kW AC motor, acting as an electrical generator to charge a 14.1 kW-hr lithium-ion traction battery pack, which powers the rear wheels by a 75 kW drive motor. Full vehicle testing was conducted on chassis dynamometers at the Vehicle Emissions Research Laboratory at Ford Motor Company and at the Vehicle Research Laboratory at Oak Ridge National Laboratory. For this work, the US Environmental Protection Agency Highway Fuel Economy Test was performed using commercially available gasoline and ultra-low sulfur diesel. Fuel economy and emissions data were recorded over the specified test cycle and calculated based on the fuel properties and the high-voltage battery energy usage.
Technical Paper

Comparison of Variable Valve Actuation, Cylinder Deactivation and Injection Strategies for Low-Load RCCI Operation of a Light Duty Engine

2015-04-14
2015-01-0843
While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
Technical Paper

Use of Multiple Injection Strategies to Reduce Emission and Noise in Low Temperature Diesel Combustion

2015-04-14
2015-01-0831
The low temperature combustion concept is very attractive for reducing NOx and soot emissions in diesel engines. However, it has potential limitations due to higher combustion noise, CO and HC emissions. A multiple injection strategy is an effective way to reduce unburned emissions and noise in LTC. In this paper, the effect of multiple injection strategies was investigated to reduce combustion noise and unburned emissions in LTC conditions. A hybrid surrogate fuel model was developed and validated, and was used to improve LTC predictions. Triple injection strategies were considered to find the role of each pulse and then optimized. The split ratio of the 1st and 2nd pulses fuel was found to determine the ignition delay. Increasing mass of the 1st pulse reduced unburned emissions and an increase of the 3rd pulse fuel amount reduced noise. It is concluded that the pulse distribution can be used as a control factor for emissions and noise.
Technical Paper

CFD Study of Soot Reduction Mechanisms of Post-Injection in Spray Combustion

2015-04-14
2015-01-0794
The application of close-coupled post injections in diesel engines has been proven to be an effective in-cylinder strategy for soot reduction, without much fuel efficiency penalty. But due to the complexity of in-cylinder combustion, the soot reduction mechanism of post-injections is difficult to explain. Accordingly, a simulation study using a three dimensional computational fluid dynamics (CFD) model, coupled with the SpeedChem chemistry solver and a semi-detailed soot model, was carried out to investigate post-injection in a constant volume combustion chamber, which is more simple and controllable with respect to the boundary conditions than an engine. A 2-D axisymmetric mesh of radius 2 cm and height 5 cm was used to model the spray. Post-injection durations and initial oxygen concentrations were swept to study the efficacy of post-injection under different combustion conditions.
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Journal Article

Improved Chemical Kinetics Numerics for the Efficient Simulation of Advanced Combustion Strategies

2014-04-01
2014-01-1113
The incorporation of detailed chemistry models in internal combustion engine simulations is becoming mandatory as local, globally lean, low-temperature combustion strategies are setting the path towards a more efficient and environmentally sustainable use of energy resources in transportation. In this paper, we assessed the computational efficiency of a recently developed sparse analytical Jacobian chemistry solver, namely ‘SpeedCHEM’, that features both direct and Krylov-subspace solution methods for maximum efficiency for both small and large mechanism sizes. The code was coupled with a high-dimensional clustering algorithm for grouping homogeneous reactors into clusters with similar states and reactivities, to speed-up the chemical kinetics solution in multi-dimensional combustion simulations.
Journal Article

Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes

2014-04-01
2014-01-1182
An experimental study has been conducted to provide insight into heat transfer to the piston of a light-duty single-cylinder research engine under Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion regimes. Two fast-response surface thermocouples embedded in the piston top measured transient temperature. A commercial wireless telemetry system was used to transmit thermocouple signals from the moving piston. A detailed comparison was made between the different combustion regimes at a range of engine speed and load conditions. The closed-cycle integrated and peak heat transfer rates were found to be lower for HCCI and RCCI when compared to CDC. Under HCCI operation, the peak heat transfer rate showed sensitivity to the 50% burn location.
Journal Article

A CFD Study of Post Injection Influences on Soot Formation and Oxidation under Diesel-Like Operating Conditions

2014-04-01
2014-01-1256
One in-cylinder strategy for reducing soot emissions from diesel engines while maintaining fuel efficiency is the use of close-coupled post injections, which are small fuel injections that follow the main fuel injection after a short delay. While the in-cylinder mechanisms of diesel combustion with single injections have been studied extensively and are relatively well understood, the in-cylinder mechanisms affecting the performance and efficacy of post injections have not been clearly established. Here, experiments from a single-cylinder heavy-duty optical research engine incorporating close- coupled post injections are modeled with three dimensional (3D) computational fluid dynamics (CFD) simulations. The overall goal is to complement experimental findings with CFD results to gain more insight into the relationship between post-injections and soot. This paper documents the first stage of CFD results for simulating and analyzing the experimental conditions.
Journal Article

Experimental Investigation of Engine Speed Transient Operation in a Light Duty RCCI Engine

2014-04-01
2014-01-1323
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions using a high-bandwidth, transient capable engine test cell. Transient RCCI and CDC combustion and emissions results are compared over an up-speed change from 1,000 to 2,000 rev/min. and a down-speed change from 2,000 to 1,000 rev/min. at a constant 2.0 bar BMEP load. The engine experiments consisted of in-cylinder fuel blending with port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and the same ULSD for the CDC tests.
Journal Article

A Surrogate Fuel Formulation Approach for Real Transportation Fuels with Application to Multi-Dimensional Engine Simulations

2014-04-01
2014-01-1464
Real transportation fuels, such as gasoline and diesel, are mixtures of thousands of different hydrocarbons. For multidimensional engine applications, numerical simulations of combustion of real fuels with all of the hydrocarbon species included exceeds present computational capabilities. Consequently, surrogate fuel models are normally utilized. A good surrogate fuel model should approximate the essential physical and chemical properties of the real fuel. In this work, we present a novel methodology for the formulation of surrogate fuel models based on local optimization and sensitivity analysis technologies. Within the proposed approach, several important fuel properties are considered. Under the physical properties, we focus on volatility, density, lower heating value (LHV), and viscosity, while the chemical properties relate to the chemical composition, hydrogen to carbon (H/C) ratio, and ignition behavior. An error tolerance is assigned to each property for convergence checking.
Journal Article

Determination of the R Factor for Fuel Economy Calculations Using Ethanol-Blended Fuels over Two Test Cycles

2014-04-01
2014-01-1572
During the 1980s, the U.S. Environmental Protection Agency (EPA) incorporated the R factor into fuel economy calculations in order to address concerns about the impacts of test fuel property variations on corporate average fuel economy (CAFE) compliance, which is determined using the Federal Test Procedure (FTP) and Highway Fuel Economy Test (HFET) cycles. The R factor is defined as the ratio of the percent change in fuel economy to the percent change in volumetric heating value for tests conducted using two differing fuels. At the time the R-factor was devised, tests using representative vehicles initially indicated that an appropriate value for the R factor was 0.6. Reassessing the R factor has recently come under renewed interest after EPA's March 2013 proposal to adjust the properties of certification gasoline to contain significant amounts of ethanol.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Technical Paper

Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure

2014-04-01
2014-01-1302
Previous work has demonstrated the capabilities of gasoline compression ignition to achieve engine loads as high as 19.5 bar BMEP with a production multi-cylinder diesel engine using gasoline with an anti-knock index (AKI) of 87. In the current study, the low load limit of the engine was investigated using the same engine hardware configurations and 87 AKI fuel that was used to achieve 19.5 bar BMEP. Single injection, “minimum fueling” style injection timing and injection pressure sweeps (where fuel injection quantity was reduced at each engine operating condition until the coefficient of variance of indicated mean effective pressure rose to 3%) found that the 87 AKI test fuel could run under stable combustion conditions down to a load of 1.5 bar BMEP at an injection timing of −30 degrees after top dead center (°aTDC) with reduced injection pressure, but still without the use of intake air heating or uncooled EGR.
Technical Paper

High Speed Dual-Fuel RCCI Combustion for High Power Output

2014-04-01
2014-01-1320
In recent years society's demand and interest in clean and efficient internal combustion engines has grown significantly. Several ideas have been proposed and tested to meet this demand. In particular, dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion has demonstrated high thermal efficiency, and low engine-out NOx, and soot emissions. Unlike homogeneous charge compression ignition (HCCI) combustion, which solely relies on the chemical kinetics of the fuel for ignition control, RCCI combustion has proven to provide superior combustion controllability while retaining the known benefits of low emissions and high thermal efficiency of HCCI combustion. However, in order for RCCI combustion to be adopted as a high efficiency and low engine-out emission solution, it is important to achieve high-power operation that is comparable to conventional diesel combustion (CDC).
Technical Paper

Modeling of Equivalence Ratio Effects on Particulate Formation in a Spark-Ignition Engine under Premixed Conditions

2014-04-01
2014-01-1607
3-D Computational Fluid Dynamics (CFD) simulations have been performed to study particulate formation in a Spark-Ignition (SI) engine under premixed conditions. A semi-detailed soot model and a chemical kinetic model, including poly-aromatic hydrocarbon (PAH) formation, were coupled with a spark ignition model and the G equation flame propagation model for SI engine simulations and for predictions of soot mass and particulate number density. The simulation results for in-cylinder pressure and particle size distribution (PSDs) are compared to available experimental studies of equivalence ratio effects during premixed operation. Good predictions are observed with regard to cylinder pressure, combustion phasing and engine load. Qualitative agreements of in-cylinder particle distributions were also obtained and the results are helpful to understand particulate formation processes.
Technical Paper

Effects of Temporal and Spatial Distributions of Ignition and Combustion on Thermal Efficiency and Combustion Noise in DICI Engine

2014-04-01
2014-01-1248
The effects of the temporal and spatial distributions of ignition timings of combustion zones on combustion noise in a Direct Injection Compression Ignition (DICI) engine were studied using experimental tests and numerical simulations. The experiments were performed with different fuel injection strategies on a heavy-duty diesel engine. Cylinder pressure was measured with the sampling intervals of 0.1°CA in order to resolve noise components. The simulations were performed using the KIVA-3V code with detailed chemistry to analyze the in-cylinder ignition and combustion processes. The experimental results show that optimal sequential ignition and spatial distribution of combustion zones can be realized by adopting a two-stage injection strategy in which the proportion of the pilot injection fuel and the timings of the injections can be used to control the combustion process, thus resulting in simultaneously higher thermal efficiency and lower noise emissions.
Technical Paper

Computational Investigation of Low Load Operation in a Light-Duty Gasoline Direct Injection Compression Ignition [GDICI] Engine Using Single-Injection Strategy

2014-04-01
2014-01-1297
The use of gasoline in a compression ignition engine has been a research focus lately due to the ability of gasoline to provide more premixing, resulting in controlled emissions of the nitrogen oxides [NOx] and particulate matter. The present study assesses the reactivity of 93 RON [87AKI] gasoline in a GM 1.9L 4-cylinder diesel engine, to extend the low load limit. A single injection strategy was used in available experiments where the injection timing was varied from −42 to −9 deg ATDC, with a step-size of 3 deg. The minimum fueling level was defined in the experiments such that the coefficient of variance [COV] of indicated mean effective pressure [IMEP] was less than 3%. The study revealed that injection at −27 deg ATDC allowed a minimum load of 2 bar BMEP. Also, advancement in the start of injection [SOI] timing in the experiments caused an earlier CA50, which became retarded with further advancement in SOI timing.
Technical Paper

Neutron Tomography of Exhaust Gas Recirculation Cooler Deposits

2014-04-01
2014-01-0628
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOx emissions standards. Exhaust gas laden with particulate matter flows through the EGR cooler which causes deposits to form through thermophoresis and condensation. The low thermal conductivity of the resulting deposit reduces the effectiveness of the EGR system. In order to better understand this phenomenon, industry-provided coolers were characterized using neutron tomography. Neutrons are strongly attenuated by hydrogen but only weakly by metals which allows for non-destructive imaging of the deposit through the metal heat exchanger. Multiple 2-D projections of cooler sections were acquired by rotating the sample around the axis of symmetry with the spatial resolution of each image equal to ∼70 μm. A 3-D tomographic set was then reconstructed, from which slices through the cooler sections were extracted across different planes.
Journal Article

Transient RCCI Operation in a Light-Duty Multi-Cylinder Engine

2013-09-08
2013-24-0050
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions, while maintaining high thermal efficiency. Previous RCCI steady-state performance studies provided a fundamental understanding of the RCCI combustion process in steady-state, single-cylinder and multi-cylinder engine tests. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions. In this study, a high-bandwidth, transient-capable engine test cell was used and multi-cylinder engine RCCI combustion is compared to CDC over a step load change from 1 to 4 bar BMEP at 1,500 rev/min. The engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and used the same ULSD for the CDC tests.
X